
Automatic Mail Delivery Detection
An Artifical Neural Networks Design Report

Sarah Brown

College of Engineering

University of Oklahoma

Norman, OK

Abstract — A neural network project that features the use of

computer vision to create a dataset for a U-Net convolutional

neural network model. By creating a dataset from archived

security footage, a model is created to predict the delivery of mail.

This model can be used to create an alert for when the mail is about

to arrive and for when it is delivered.

Keywords—U-Net, Image Recognition, Neural Networks

I. INTRODUCTION

A. Description of Problem

Mail can often be delivered at unpredictable times, which can

disrupt habits and lead to mail being forgotten. Forgotten mail

can result in issues with bills or missing other important

information. In addition, with social distancing over the past

year, avoiding contact with postal workers can provide peace of

mind and offers essential workers additional safety.

B. Problem Solution

By creating a model that detects when the post truck is stopped

at the mailbox, an alert can be sent to notify inhabitants of mail

delivery. Archived footage from home security cameras with a

view of the mailbox was used to create a dataset to train this

model. The original approach to this project included the

creation of the alert system in addition to the model. However,

this is something that will be appended later. Future additions

to this project will take the finished model and incorporate it

into live camera footage to provide notifications of mail

delivery.

II. DATASET

The raw dataset was created by extracting archived footage and

sorting photos into negative and positive directories. This data

was then split into three subcategories for training, validation,

and testing. This data was then processed with two functions.

One function was created to process individual images and the

other was created to process the different folders. The images

were cropped to a 400x400 pixel square region surrounding the

mailbox and then was resized to be a 64x64 pixel square. After

the images were processed, they were saved to a new directory

to be read into the model. Some adjustments had to be made to

the dataset throughout the process. The main adjustment was to

remove some data due to the camera having changed angles

partway through the saved images. This angle difference

resulted in a large change in the mailbox position in the camera

frame and also changed the point of view of the mail truck. As

the old angle was not relevant to the current problem, the

images were removed from the dataset. Fortunately, this did not

make the size of the dataset too much smaller. In addition, as

time goes on more data can be collected from the new camera

angle. Another created function is used to display the different

sections of the dataset for ease of use. This allows for quick

glances to identify abnormalities in the dividing of the dataset.

[2][4]

Figure 1. Positive images containing a mail truck that were used for training

and validation purposes.

III. DATA MANIPULATION

Once the processed image directories have been created, Keras’

ImageDataGenerator class is used to load the dataset and

generate batches of data. The datasets are made using the

flow_from_directory function to quickly import data. The

training dataset uses the shuffle feature, while the other two do

not. Shuffling the training set helps to decrease overfitting. The

ImageDataGenerator class also has a rotation option that

automatically rotates images within a certain degree range. This

feature was included for testing while the dataset contained

images from the other camera angle. However, this introduced

some errors of the mail truck being identified as at the mailbox

when it was actually going back down the street in the opposite

direction. Therefore, when the other images were removed from

the dataset the rotation aspects were removed from the image

augmentation process. [1][5]

Figure 2. Individual images shown from the train, test, and validation

datasets.

IV. MODEL

The model for this project is implemented using a U-Net. This

model expands on the U-Net like predictor that was used for

the stock market data in homework 4. The model takes in the

cropped and resized image as input and performs a series of

operations to predict whether the mail truck is stopped at the

mailbox. The contracting path starts at 64x64x3 and ends at

16x16x64. The data is then upsampled on the expansive path.

A flatten and a dense layer are then added to condense the

result to an output of shape 1. After the model is constructed

with use of the Tensorflow package, it is trained using the

constructed datasets. Validation data is used to avoid

overfitting. The model was recreated with binary accuracy

with very similar results.

Figure 3. Graphic showing U-Net model.

V. MODEL RESULTS

The model is then tested with use of the test dataset and the

labels are compared against the file names to determine

accuracy [3]. The training results ended with a 99% accuracy

with a loss of 0.0173. The accuracy on the test data was

measured to be 98.8% or 2 photos being misclassified out of

164. However, these two incorrectly labeled photos may be in

part due to the mail truck appeared earlier in the frame than

other positive images. Since the mail truck pauses at the

mailbox to deliver mail, this will provide multiple frames to

sample from and should be very consistent with this level of

accuracy.

Figure 4: Training results from the accuracy-based U-Net model.

Figure 5: Some of the correctly identified photos.

Figure 6: The two incorrectly identified photos.

VI. TESTING MODEL ON VIDEO

This model was testing on various recorded videos containing

negative and positive results. By reading in the video with the

use of OpenCV, the saved model was then applied to each

frame. The probability that the given frame is positive is then

shown in the upper left of the outputted image. A threshold is

applied to this probability to classify the incoming data. If the

probability is greater than 0.5, it is a positive result. Otherwise,

it is a negative and the mail truck is not stopped in front of the

mailbox.

Figure 7: Test result showing that the mail truck is not at the mailbox.

Figure 8: Test result showing that the mail has arrived.

VII. ADDITIONAL CAMERA RESULTS

In addition to being able to tell when the mail has arrived, it is

also important to be able to tell when the mail is coming.

Having an alert that notifies users of this event is beneficial as

it creates a chance to place mail in the mailbox before the truck

arrives. A different model was created by repeating the same

process, but with a different camera view. However, this

camera view did not have as many positive results archived and

therefore is not optimized to different lighting conditions yet.

Out of 83 test images, 1 was incorrectly labeled as negative.

This model also has a very high training accuracy and shows

signs of having a high testing accuracy. Validation was skipped

while creating this model due to the smaller amount of data

available. As more data is collected in the future, validation will

be added to help decrease risks of overfitting as well. More data

will also help with different lighting conditions as the current

model only works well with minimal shade.

Figure 9: Training results from the other camera view model.

Figure 10: Correctly identified test pictures.

Figure 11: Incorrectly identified test picture (lots of shade in photo).

Figure 12: Model test on video showing that the mail has arrived.

VIII. CONCLUSIONS

A. Challenges

There were several especially challenging aspects while

tackling this project. Some of these challenges came from

manipulating the dataset to be cropped to the correct portion of

the frame. In addition, when using the flow_from_directory

function from Keras’ ImageDataGenerator, it was unclear that

this defaulted to 256x256 pixels as it output which caused

issues with the input dimensions into the model. There were

also other issues in getting dimensions to match all of the way

through the created model. In addition, there were some issues

related to obtaining a negative probability in the results until a

Sigmoid activation was added to the last dense layer of the

model. This Sigmoid activation limited the probability value to

be between 0 and 1, solving the issue.

B. Further Work

This project can be extended by adding this model to the camera

system to monitor for the delivery of mail. As the camera

system is on a separate network within the house, it will have

to be implemented in a way to accommodate being hosted on a

different network. By monitoring the video frames during the

afternoon hours, the model will be able to detect if the mail

truck stops at the house. In addition, by measuring how long the

truck is stopped in front of the mailbox, false positives can be

avoided on days that the truck just drives by without delivering

mail. This system would then generate an alert depending on

whether or not the mail was delivered and notify the

inhabitants.

CODE

Code for this project can be viewed at:

https://github.com/SarahBrown/ECE5973-

ANN/tree/main/Final%20Project

REFERENCES

[1] B. Kanani, “Keras ImageDataGenerator with flow_from_directory(),”

Machine Learning Tutorials, 11-Oct-2019. [Online]. Available:
https://studymachinelearning.com/keras-imagedatagenerator-with-
flow_from_directory/. [Accessed: 13-May-2021].

[2] “Long explanation of using plt subplots to create small multiples,”
Jonathan Soma makes things. [Online]. Available:
http://jonathansoma.com/lede/data-studio/classes/small-multiples/long-

explanation-of-using-plt-subplots-to-create-small-multiples/. [Accessed:
13-May-2021].

[3] “Project Idea: Cat vs Dog Image Classifier using CNN implemented using
Keras,” GeeksforGeeks, 09-Aug-2018. [Online]. Available:
https://www.geeksforgeeks.org/project-idea-cat-vs-dog-image-classifier-
using-cnn-implemented-using-keras/. [Accessed: 13-May-2021].

[4] “Simple ImageGrid,” Simple ImageGrid - Matplotlib 3.4.2
documentation. [Online]. Available:
https://matplotlib.org/stable/gallery/axes_grid1/simple_axesgrid.html.
[Accessed: 13-May-2021].

[5] V. J, “Tutorial on using Keras flow_from_directory and generators,”
Medium, 02-Dec-2019. [Online]. Available:
https://vijayabhaskar96.medium.com/tutorial-image-classification-with-
keras-flow-from-directory-and-generators-95f75ebe5720. [Accessed: 13-
May-2021].

https://github.com/SarahBrown/ECE5973-ANN/tree/main/Final%20Project
https://github.com/SarahBrown/ECE5973-ANN/tree/main/Final%20Project

