
Detecting Dice
A Computer Vision Project Report

Sarah Brown

College of Engineering

University of Oklahoma

Norman, OK

Abstract — A computer vision project focused on filtering an

image to the shape of dice in a tray and processing the numbers on

the dice. Main application of project centers on the use of physical

dice in online sessions for tabletop games. GUI interface allows

players to show their dice rolls to other players during gameplay.

Retains the positive aspects of physical dice in online

environments.

Keywords— computer vision, text recognition, filtering, dice

I. INTRODUCTION

A. Description of Problem

In many tabletop games, dice are used to predict outcomes and

results of different scenarios. Standard sets of dice have seven

different types of polyhedral dice (d4, d6, d8, d10, d12, d20,

d%). As dice sets like these are common across many games,

many people collect them in various colors and styles.

However, as more events are occurring online due to safety

risks of in-person gatherings, random number generators are

often used instead. This can take some of the fun out of seeing

player reactions to a really good roll of the dice.

B. Problem Solution

By introducing a dice tray setup that includes a camera that can

observe the dice rolls, friends can share video streams and get

real time reactions to dice rolls in online settings. This solution

focuses on processing a video stream of dice rolling into a small

tray to retrieve the dice values.

C. Differences Between Orignal Plan and Implemented Plan

The original project scope allowed for processing of all seven

types of dice except for the d4 and would be motion activated.

Due to difficultly processing some of the different die shapes,

only the d6, d8, d10, and d12 obtain reliable results. In addition,

the current setup relies on a GUI button being pressed to

activate the processing as motion detection was not

implemented. Finally, when dice are rolled into a tray, they can

land in a random rotation, but this causes issues with text

recognition as images are in the wrong orientation. Motion

detection and automatic image rotation will be implemented in

future adjustments to this project.

II. OVERVIEW OF PROCESS

A. Intial Approach

Initially, image processing focused on filtering based on HSV

values and creating an image mask with on a range of HSV

values. This approach worked well on dice after a calibration

process and was used to identify dice type based on the number

of edges found in the filtered picture. However, the filtering

process had to be calibrated for each different die color and

resulted in missing pixels in the number on the die face.

Because of these issues, a different filtering processed was used

following the progress report.

Figure 1. A d12 filtered with a HSV color range.

Figure 2. A d12 and a d6 correctly identified based on number of edges

found in the image.

B. Final Approach

The second approach focused on a series of filtering techniques

applied to video frames from the webcam stream. This image

was filtered to reduce noise and then used to find the edges with

a Canny edge detection. The edges are then filtered based on

contour length to identify the edges of the die. Using the die

edges, the number of vertices is found and counted to identify

the type of die. The die type is then used to specify the numbers

that are expected to be seen on the current die to enable the use

of a whitelist to increase text recognition accuracy. This

approach still requires aspects of calibration as it uses contour

length to help filter images, which is based on how far away the

camera is from the dice.

Figure 3. Outline of filtering and text recognition process.

III. TESTING SETUP

A testing setup was used to facilitate consistent testing results

between different filtering configurations. This setup was

constructed with a paper dice tray and a webcam elevated on a

3D printed stand. This setup created a constrained environment

for the rolling of dice and guaranteed the die always landed in

the cameras field of view. The testing setup was essential to

comparing the results of different ways of filtering as it

eliminated additional variables.

Figure 4. Testing setup with a paper dice tray and webcam.

IV. IMAGE PROCESSING

A. General Image Filtering

The image filtering goes through several steps. First, the image

is converted to grayscale. This is followed by the use of a

median blur to remove noise from the camera and other sources.

After this, the image is blurred again with a Gaussian blur. After

it is blurred, the edges are found with a Canny edge detect

function. This image is saved for use with text recognition. The

edges are then blurred again with another Gaussian blur to be

used to find the edges of the die. This process was tested in

different orders and with different strengths to determine the

most effective process. Testing was done by showing the

camera input, the filtering output, and the results after a mask

to remove the edges of the die was applied. The edges of the die

were removed to aid with the text recognition process. This also

helped to isolate the individual die number on dice where more

than one number at a time is visible.

B. Addition of Mask

Using the blurred output from the Canny edge detection, the

OpenCV function findContours was used to identify contours.

These contours were then filtered by length to identify the edges

of the die in the frame. By drawing the approximate of these

contours on a blank image, it was possible to apply a mask to

the frames to remove the edges of the die. This was

implemented due to errors that were received during the text

recognition step due to the shape of the die. In addition to

masking based on the outline of the die, it is possible to find the

middle of the contours and create different mask shapes. These

masks are then applied to the center of the die. However, this

had issues earlier because of the contours shifting due to camera

noise. This noise was minimized with the addition of a second

Gaussian blur in the filtering stage. However, masking with

various shapes instead of the contours of the die has not been

tested with text recognition at this point.

Figure 5. A d12 showing the different steps of processing. Left: Camera Input.

Middle: Filtered Image. Right: Image with Mask.

Figure 6. A d6 showing the different steps of processing. Left: Camera Input.

Middle: Filtered Image. Right: Image with Mask.

Figures 7 & 8. Left, a mask for the d12 based on the edges of the die. Right, a
mask for the d6 made by adding a square on the center of the contours found

for the die’s edges.

V. TEXT RECOGNITION

The output of the frame being filtered and processed is then

used to detect digits on the die’s face. This is done with

Google’s open source OCR engine Tesseract. With the use of

the Python version of this package, it is possible to identify text.

There are various configuration modes for Tesseract and by

implementing options for digit characters only, recognition

results were improved immensely from initial tests. In addition,

by creating different configuration variables per die type, it was

possible to create whitelists to avoid misrecognizing digits.

This specifically improved results for the d6 as removing the

digit ‘8’ helped the results for correctly identifying the ‘3’ digit.

VI. GUI INTERFACE

To allow users easy access, a graphic user interface was

developed with the use of the package PySimpleGUI. This

package was used to create a window to house the video stream

and a button to trigger the image processing. After the roll

button has been pressed, the program takes 10 sample images

and outputs the mode of this data back out on the window. In

addition, the window shows the label for the die based on the

number of edges that have been identified.

Figure 9. The GUI interface showing the result of rolling a d12.

Figure 10. The GUI interface showing the result of rolling a d6.

VII. CONCLUSION

A. Challenges

The main challenges that were faced while working on this

project centered on developing a filtering process that

accommodated for various lighting conditions and did not

require additional, direct lighting to be provided. This challenge

was faced by shifting from the HSV filtering approach to the

one described in previous sections. In addition, when first

testing text recognition the edges of the die were not filtered out

of the image. The edges resulted in errors and random

characters, but the application of masks helped limit these

errors. Another challenge related to text recognition was that

the digits were often viewed as random characters. This was

solved by adding a whitelist to the text recognition

configuration which eliminated many errors.

B. Further Work

This project can be improved by adding elements to detect

motion between video frames. Detecting motion would allow

for digit recognition to begin automatically when dice are rolled

into the dice tray. In addition, when dice are rolled into the tray

instead of placed into the tray, they can land in many different

configurations. Improvements to the filtering process are

needed to accommodate for rotated dice to prevent errors

arising in the digit recognition aspects of the project.

Code Appendix
The code for this project is shown below. This can also been seen on the github project here:

https://github.com/SarahBrown/ECE5973-CV/blob/main/Final%20Project/final_project_2021.py

import PySimpleGUI as sg

from cv2 import cv2

import numpy as np

import imutils

import pytesseract

import statistics

configd4 = '--oem 3 --psm 6 outputbase digits -c tessedit_char_whitelist=1234'

configd6 = '--oem 3 --psm 6 outputbase digits -c tessedit_char_whitelist=123456'

configd8 = '--oem 3 --psm 6 outputbase digits -c tessedit_char_whitelist=12345678'

configMisc = '--oem 3 --psm 6 outputbase digits -c tessedit_char_whitelist=0123456789'

CAMERA = 2

def filter(img):

 imgReturn = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 imgReturn = cv2.medianBlur(imgReturn,3)

 imgReturn = cv2.GaussianBlur(imgReturn,(3,3),5)

 imgCanny = cv2.Canny(imgReturn, 0, 255,(7,7))

 imgReturn = cv2.GaussianBlur(imgCanny,(5,5),5)

 return(imgReturn, imgCanny)

def detectShape(process_img):

 shape = 'unknown'; sides = None

 mask = np.zeros(process_img.shape[:2], dtype="uint8")

 cnts = cv2.findContours(process_img.copy(), cv2.RETR_EXTERNAL,

 cv2.CHAIN_APPROX_SIMPLE)

 cnts = imutils.grab_contours(cnts)

 for cnt in cnts:

 if cv2.arcLength(cnt,False) > 500:

 accuracy = 0.02*cv2.arcLength(cnt,True)

 approx = cv2.approxPolyDP(cnt, accuracy, True)

 sides = len(approx)

 cv2.drawContours(mask,[approx],-1,(255,255,255),15)

 if (sides == 3):

 shape='d4'

 elif(sides==4):

 shape='d6'

 elif(sides==7):

 shape='d12'

 else:

 shape='circle'

 return shape, mask

def detectTextd4(img, mask):

 maskNot = cv2.bitwise_not(mask)

 masked = cv2.bitwise_and(img, img, mask=maskNot)

 masked = cv2.dilate(masked, (3,3), iterations=2)

 masked = cv2.GaussianBlur(masked,(3,3),5)

 masked = 255 - masked

 masked_text = pytesseract.image_to_string(masked, config=configd4)

 return(masked_text)

def detectTextd6(img, mask):

 maskNot = cv2.bitwise_not(mask)

 masked = cv2.bitwise_and(img, img, mask=maskNot)

 masked = cv2.dilate(masked, (3,3), iterations=2)

 masked = cv2.GaussianBlur(masked,(3,3),5)

 masked = 255 - masked

 masked_text = pytesseract.image_to_string(masked, config=configd6)

 return(masked_text)

def detectTextd8(img, mask):

 maskNot = cv2.bitwise_not(mask)

 masked = cv2.bitwise_and(img, img, mask=maskNot)

 masked = cv2.dilate(masked, (3,3), iterations=2)

 masked = cv2.GaussianBlur(masked,(3,3),5)

 masked = 255 - masked

 masked_text = pytesseract.image_to_string(masked, config=configd8)

 return(masked_text)

def detectTextMisc(img, mask):

 maskNot = cv2.bitwise_not(mask)

 masked = cv2.bitwise_and(img, img, mask=maskNot)

 masked = cv2.dilate(masked, (3,3), iterations=2)

 masked = cv2.GaussianBlur(masked,(3,3),5)

 masked = 255 - masked

 masked_text = pytesseract.image_to_string(masked, config=configMisc)

 return(masked_text)

https://github.com/SarahBrown/ECE5973-CV/blob/main/Final%20Project/final_project_2021.py

def createWindow():

 sg.theme("LightGreen")

 # Define the window layout

 layout = [

 [sg.Image(filename="", key="-IMAGE-")],

 [sg.Button("Roll", size=(10, 1), key="-ROLL-")],

 [[sg.Text("", size=(60, 1), justification="left", key="-c-")],

 [sg.Text("", size=(60, 1), justification="left", key="-shape-")]],

 [sg.Button("Exit", size=(10, 1))],

]

 # Create the window and show it

 window = sg.Window("OpenCV Final Project", layout, location=(800, 400))

 return window

def main():

 window = createWindow()

 cap = cv2.VideoCapture(CAMERA)

 while True:

 event, values = window.read(timeout=20)

 if event == "Exit" or event == sg.WIN_CLOSED:

 break

 ret, frame = cap.read()

 if event == "-ROLL-":

 dice_value = None; die_shape = ''; dice_values = []; shapes = []

 for i in range(10):

 process_img, process_canny = filter(frame)

 die_shape, mask = detectShape(process_img)

 print(die_shape)

 if(die_shape == 'd4'):

 dice_value = detectTextd4(process_canny, mask)

 elif (die_shape == 'd6'):

 dice_value = detectTextd6(process_canny, mask)

 elif(die_shape == 'd8'):

 dice_value = detectTextd8(process_canny, mask)

 else:

 dice_value = detectTextMisc(process_canny, mask)

 shapes.append(die_shape)

 print(dice_value)

 if (dice_value != '\x0c'):

 dice_values.append(int(dice_value[:2]))

 ret, frame = cap.read()

 print(dice_values)

 print(shapes)

 if (len(dice_values) > 0):

 dice_value = statistics.mode(dice_values)

 print(dice_value)

 window["-c-"].update((dice_value))

 window["-shape-"].update((shapes[0]))

 imgbytes = cv2.imencode(".png", frame)[1].tobytes()

 window["-IMAGE-"].update(data=imgbytes)

 window.close()

main()

