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Abstract— A FPGA implementation of a simple neural 

network to identify numbers trained on the MNIST dataset. By 

taking the weights and biases of a trained model, it is possible to 

reconstruct the model for inference purposes on a FPGA. This 

allows for the model to be run very quickly and independently.  
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I. INTRODUCTION  

A. Artificial Neural Networks 

Neural networks are a type of machine learning modeled after 

the neurons of a brain. They are very effective at creating 

models for tasks that can be very difficult for computers to do 

traditionally. Any machine learning task can be broken into 

two parts, training and inference. Neural networks work by 

summing together various inputs with different weights. 

Training helps to determine the different weights and biases 

that result in the best accuracy for a model. Training has been 

studied in depth to effectively use software to create optimal 

models, but once a model is trained it simply needs to be run 

through the created architecture. Due to the effectiveness and 

potential for neural networks, there is a large amount of 

interest in creating specialized hardware to run inputs through 

the constructed neural network model to produce outputs.  

B. FPGA Background 

There are various different ways of implementing hardware 

solutions to perform inference on inputs. Application-specific 

integrated circuits (ASIC) can be designed to perform specific 

operations. One example is TPU Cloud, designed by Google 

to accelerate machine learning operations [1]. However, 

ASICs can take a long time to develop. Field-programmable 

gate arrays (FPGAs) are a type of integrated circuit that can be 

configured with a hardware description language (HDL). As 

FPGAs can be reconfigured, they are ideal for testing and 

development.  

C. Use of FPGAs for Inference 

While they are less efficient due to being reconfigurable, 

FPGAs are much more flexible than ASICs for development. 

This creates an area of research in the middle between the two 

ends of efficiency and flexibility. [3] One example of this 

middle-ground is a project developed by Microsoft, Project 

Brainwave. Project Brainwave works to run pre-trained neural 

networks on FPGAs to increase the efficiency of Microsoft 

datacenters. FPGAs allow for rapid development and can be 

reprogrammed as AI algorithms are improved and updated. 

D. Reason for Interest 

Both FPGAs and neural networks are large and expanding 

areas of study. Due to increased interest in these fields, the 

skill sets gained from working on a project related to both 

areas can be beneficial on a professional level. In addition to 

reviewing FPGA knowledge learned in previous course, this 

project allows further expansion into overlap between 

disciplines.  

 

The Hello, World of neural networks is to be able to identify a 

handwritten digit from the MNIST dataset. This is a solved 

problem and one that can be implemented with a simple neural 

network. This project creates a neural network architecture in 

Python with the Keras package and then implements it on a 

FPGA with a HDL, Verilog. 

II. PYTHON 

A. Keras Model 

With the use of the Keras package, it is trivial to instantiate a 

model and then train it using the MNIST dataset. The model 

architecture is a fully-connected neural network. The inputs 

are all fed into the first layer neurons via a weighted sum and 

the first layer is then connected to the second layer. The 

maximum value from the second layer is then selected to 

represent the output. Between the layers, an activation 

function is used to determine when the neuron is activated. 

There are many different types of activation functions. One of 

these is the rectified linear unit (ReLU) activation function. 

The ReLU function is a piecewise linear function that is 0 for 

negative numbers and linear with a slope of 1 for positive 

numbers.  

 

 



Image 1: ReLU Function. 

Due the linearity of this activation function, it makes the 

hardware implementation much easier. During training, the 

weights and biases per layer are adjusted to increase model 

accuracy. After training, these values can be reconstructed and 

used to recreate the model architecture for deployment. 

 

 
Image 2: Model instantiation with Keras package. 

 

 
Image 3: Model details and testing accuracy. 

B. Python Reimplementation 

Before transitioning the model architecture to hardware, the 

model was then recreated in Python without the Keras 

package. By taking the saved weights and biases, it was 

possible to loop over the test images and confirm that the 

testing accuracy remained consistent. This reimplementation 

also allowed for value confirmation during FPGA simulation, 

proving valuable for debugging Verilog code issues. 

C. Floating Point to Fixed Point 

With confirmation of a working architecture, the next step is 

to output the weights and biases in a way that can be imported 

to FPGA memory. However, before writing these values to 

memory initialization files, the floating-point numbers were 

converted to fixed-point numbers. Fixed-point numbers are 

easier to understand and implement in the context of 

hardware. There is a small loss of precision when converting 

to fixed-point, but the advantages far outweigh the resulting 

small differences. In addition, conversion to and from floating 

point was implemented in the pure python version to confirm 

that this accuracy difference would not impact the result.  

III. FPGA 

A. FPGA Code 

With the saved model values in fixed-point format, the next 

step was to try to implement a first layer neuron and verify its 

expected output versus its actual output using the step-by-step 

values from the pure python implementation. The first layer 

neuron reads in the bias values and then iterates over each 

pixel to sum the weighted values. The ReLU function is then 

applied, resulting in a completed neuron. 

 
Image 4: Layer 1 neuron. 

 

Using ModelSim, a FPGA simulation tool, neuron 0 of the 

first layer was tested by loading in the pixel values for the first 

test image from the MNIST dataset. The expected values, the 

pixel 0 values for all 10 neurons are shown below, were 

compared to the simulation results to confirm accuracte FPGA 

implementation. A ModelSim screenshot can be seen in 

Appendix B image 2. 
 

Image 5: Values for layer 1 pixel 0 calculated from pure python method. 
 

After confirmation that neuron 0 worked as intended, copies 

of this module were instantiated to form all ten neurons of 

layer 1.  
 

Similarly, the first neuron of layer 2 was created and tested. 

Instead of iterating across each pixel as was done in layer 1, 

the neurons of layer 2 receive each of the output values from 

layer 1. This was again confirmed to function as intended via 

simulation. 



 
Image 6: Values for neuron 10 layer 2, calculated from pure python method 

 

However, no ReLU function is applied to these neurons and 

instead a softmax is applied to all of layer 2 to select the 

output with the highest value. This value is then fed through a 

seven-segment display decoder and shown on the FPGA 

board. 

 

 
Image 7: Display on DE10-Lite showing the correctly identified 7. 

 

To control the flow of data between the network’s layers, a 

state machine was implemented as a control block. This 

control block ensures that the memory is loaded correctly and 

switches states to process the loaded pixel values. The full 

schematic of the resulting from the FPGA code can be viewed 

in Appendix B image 4. 

 
Image 8: FPGA block diagram.  

IV. CONCLUSION 

A. Results 

The most obvious result is the fact that the first test image was 

correctly identified and displayed as a seven. However, further 

comparison can be done via the time it took for each 

operation. The FPGA implementation resulted in the fastest 

time to predict an image based on a preconstructed model by 

over a factor of 8. Additional streamlining of the FPGA code 

could further increase this time gap. 

  

 Time 

Pure Python 186000 µs 

Keras 68.5 µs 

FPGA 8.1 µs 
Table 1: Time results. 

 

 
Image 9: Time result for FPGA implementation.  



B. Further Work 

Additional work on this project could be done to further 

decrease the time required to predict an image. One way to do 

this would be to increase the neurons in layer 1 and split the 

image in half between the increased number of neurons. In 

addition, currently only one image is stored in memory, but 

work could be done to feed images in to predict over a high-

speed interface. As a final step, a camera could be added to the 

FPGA setup to predict handwritten digits in real time. 
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APPENDIX A: CODE 

The Python and Verilog code for this project can be viewed on my Github at https://github.com/SarahBrown/fpga-mnist-dataset  

APPENDIX B. IMAGES 

 
Appendix B: Image 1. Confirmation of bias values. 

 

 
Appendix B: Image 2. Layer 1pixel values. 

 

 
Appendix B: Image 3. Neuron 10 and neuron 11 in the second layer as well as the final digit output. 

https://github.com/SarahBrown/fpga-mnist-dataset


 
Appendix B: Image 4. Schematic of the internal structure of the design netlist. A larger version of this schematic can be viewed 

here: https://github.com/SarahBrown/fpga-mnist-dataset/netlist.pdf 

 

https://github.com/SarahBrown/fpga-mnist-dataset

