
FPGA Neural Net Implementation
An Independent Study Report

Sarah Brown

College of Engineering

University of Oklahoma

Norman, OK

Abstract— A FPGA implementation of a simple neural

network to identify numbers trained on the MNIST dataset. By

taking the weights and biases of a trained model, it is possible to

reconstruct the model for inference purposes on a FPGA. This

allows for the model to be run very quickly and independently.

Keywords—FPGA, Neural Net, MNIST Dataset, Inference

I. INTRODUCTION

A. Artificial Neural Networks

Neural networks are a type of machine learning modeled after

the neurons of a brain. They are very effective at creating

models for tasks that can be very difficult for computers to do

traditionally. Any machine learning task can be broken into

two parts, training and inference. Neural networks work by

summing together various inputs with different weights.

Training helps to determine the different weights and biases

that result in the best accuracy for a model. Training has been

studied in depth to effectively use software to create optimal

models, but once a model is trained it simply needs to be run

through the created architecture. Due to the effectiveness and

potential for neural networks, there is a large amount of

interest in creating specialized hardware to run inputs through

the constructed neural network model to produce outputs.

B. FPGA Background

There are various different ways of implementing hardware

solutions to perform inference on inputs. Application-specific

integrated circuits (ASIC) can be designed to perform specific

operations. One example is TPU Cloud, designed by Google

to accelerate machine learning operations [1]. However,

ASICs can take a long time to develop. Field-programmable

gate arrays (FPGAs) are a type of integrated circuit that can be

configured with a hardware description language (HDL). As

FPGAs can be reconfigured, they are ideal for testing and

development.

C. Use of FPGAs for Inference

While they are less efficient due to being reconfigurable,

FPGAs are much more flexible than ASICs for development.

This creates an area of research in the middle between the two

ends of efficiency and flexibility. [3] One example of this

middle-ground is a project developed by Microsoft, Project

Brainwave. Project Brainwave works to run pre-trained neural

networks on FPGAs to increase the efficiency of Microsoft

datacenters. FPGAs allow for rapid development and can be

reprogrammed as AI algorithms are improved and updated.

D. Reason for Interest

Both FPGAs and neural networks are large and expanding

areas of study. Due to increased interest in these fields, the

skill sets gained from working on a project related to both

areas can be beneficial on a professional level. In addition to

reviewing FPGA knowledge learned in previous course, this

project allows further expansion into overlap between

disciplines.

The Hello, World of neural networks is to be able to identify a

handwritten digit from the MNIST dataset. This is a solved

problem and one that can be implemented with a simple neural

network. This project creates a neural network architecture in

Python with the Keras package and then implements it on a

FPGA with a HDL, Verilog.

II. PYTHON

A. Keras Model

With the use of the Keras package, it is trivial to instantiate a

model and then train it using the MNIST dataset. The model

architecture is a fully-connected neural network. The inputs

are all fed into the first layer neurons via a weighted sum and

the first layer is then connected to the second layer. The

maximum value from the second layer is then selected to

represent the output. Between the layers, an activation

function is used to determine when the neuron is activated.

There are many different types of activation functions. One of

these is the rectified linear unit (ReLU) activation function.

The ReLU function is a piecewise linear function that is 0 for

negative numbers and linear with a slope of 1 for positive

numbers.

Image 1: ReLU Function.

Due the linearity of this activation function, it makes the

hardware implementation much easier. During training, the

weights and biases per layer are adjusted to increase model

accuracy. After training, these values can be reconstructed and

used to recreate the model architecture for deployment.

Image 2: Model instantiation with Keras package.

Image 3: Model details and testing accuracy.

B. Python Reimplementation

Before transitioning the model architecture to hardware, the

model was then recreated in Python without the Keras

package. By taking the saved weights and biases, it was

possible to loop over the test images and confirm that the

testing accuracy remained consistent. This reimplementation

also allowed for value confirmation during FPGA simulation,

proving valuable for debugging Verilog code issues.

C. Floating Point to Fixed Point

With confirmation of a working architecture, the next step is

to output the weights and biases in a way that can be imported

to FPGA memory. However, before writing these values to

memory initialization files, the floating-point numbers were

converted to fixed-point numbers. Fixed-point numbers are

easier to understand and implement in the context of

hardware. There is a small loss of precision when converting

to fixed-point, but the advantages far outweigh the resulting

small differences. In addition, conversion to and from floating

point was implemented in the pure python version to confirm

that this accuracy difference would not impact the result.

III. FPGA

A. FPGA Code

With the saved model values in fixed-point format, the next

step was to try to implement a first layer neuron and verify its

expected output versus its actual output using the step-by-step

values from the pure python implementation. The first layer

neuron reads in the bias values and then iterates over each

pixel to sum the weighted values. The ReLU function is then

applied, resulting in a completed neuron.

Image 4: Layer 1 neuron.

Using ModelSim, a FPGA simulation tool, neuron 0 of the

first layer was tested by loading in the pixel values for the first

test image from the MNIST dataset. The expected values, the

pixel 0 values for all 10 neurons are shown below, were

compared to the simulation results to confirm accuracte FPGA

implementation. A ModelSim screenshot can be seen in

Appendix B image 2.

Image 5: Values for layer 1 pixel 0 calculated from pure python method.

After confirmation that neuron 0 worked as intended, copies

of this module were instantiated to form all ten neurons of

layer 1.

Similarly, the first neuron of layer 2 was created and tested.

Instead of iterating across each pixel as was done in layer 1,

the neurons of layer 2 receive each of the output values from

layer 1. This was again confirmed to function as intended via

simulation.

Image 6: Values for neuron 10 layer 2, calculated from pure python method

However, no ReLU function is applied to these neurons and

instead a softmax is applied to all of layer 2 to select the

output with the highest value. This value is then fed through a

seven-segment display decoder and shown on the FPGA

board.

Image 7: Display on DE10-Lite showing the correctly identified 7.

To control the flow of data between the network’s layers, a

state machine was implemented as a control block. This

control block ensures that the memory is loaded correctly and

switches states to process the loaded pixel values. The full

schematic of the resulting from the FPGA code can be viewed

in Appendix B image 4.

Image 8: FPGA block diagram.

IV. CONCLUSION

A. Results

The most obvious result is the fact that the first test image was

correctly identified and displayed as a seven. However, further

comparison can be done via the time it took for each

operation. The FPGA implementation resulted in the fastest

time to predict an image based on a preconstructed model by

over a factor of 8. Additional streamlining of the FPGA code

could further increase this time gap.

 Time

Pure Python 186000 µs

Keras 68.5 µs

FPGA 8.1 µs
Table 1: Time results.

Image 9: Time result for FPGA implementation.

B. Further Work

Additional work on this project could be done to further

decrease the time required to predict an image. One way to do

this would be to increase the neurons in layer 1 and split the

image in half between the increased number of neurons. In

addition, currently only one image is stored in memory, but

work could be done to feed images in to predict over a high-

speed interface. As a final step, a camera could be added to the

FPGA setup to predict handwritten digits in real time.

REFERENCES

[1] “Cloud TPU,” Google. [Online]. Available:

https://cloud.google.com/tpu. [Accessed: 09-May-2022].

[2] “Project Brainwave,” Microsoft Research, 12-Nov-2020.

[Online]. Available: https://www.microsoft.com/en-

us/research/project/project-brainwave/. [Accessed: 26-

Apr-2022].

[3] “FPGA based acceleration of machine learning algorithms

involving convolutional neural networks,” RSS, 01-Jul-

2020. [Online]. Available:

https://thedatabus.io/introduction. [Accessed: 26-Apr-

2022].

[4] “Verilog For Loop,” ChipVerify. [Online]. Available:

https://www.chipverify.com/verilog/verilog-for-loop.

[Accessed: 08-May-2022].

[5] J. Brownlee, “A gentle introduction to the rectified linear

unit (ReLU),” Machine Learning Mastery, 20-Aug-2020.

[Online]. Available:

[6] V. Kizheppatt, “Neural Networks on FPGA: Part 1:

Introduction - YouTube,” YouTube. [Online]. Available:

https://www.youtube.com/watch?v=rw_JITpbh3k.

[Accessed: 09-May-2022].

[7] Intel FPGA, “Machine Learning on FPGAs: Neural

Networks - YouTube,” YouTube. [Online]. Available:

https://www.youtube.com/watch?v=3iCifD8gZ0Q.

[Accessed: 09-May-2022].

[8] 3Blue1Brown, “But what is a neural network? | Chapter 1,

Deep Learning – YouTube.” YouTube [Online].

Available:

https://www.youtube.com/watch?v=aircAruvnKk.

[Accessed: 09-May-2022].

[9] https://machinelearningmastery.com/rectified-linear-

activation-function-for-deep-learning-neural-networks/.

[Accessed: 08-May-2022].

APPENDIX A: CODE

The Python and Verilog code for this project can be viewed on my Github at https://github.com/SarahBrown/fpga-mnist-dataset

APPENDIX B. IMAGES

Appendix B: Image 1. Confirmation of bias values.

Appendix B: Image 2. Layer 1pixel values.

Appendix B: Image 3. Neuron 10 and neuron 11 in the second layer as well as the final digit output.

https://github.com/SarahBrown/fpga-mnist-dataset

Appendix B: Image 4. Schematic of the internal structure of the design netlist. A larger version of this schematic can be viewed

here: https://github.com/SarahBrown/fpga-mnist-dataset/netlist.pdf

https://github.com/SarahBrown/fpga-mnist-dataset

