
Robot Localization with Particle Filters
An Information Theory Design Report

Sarah Brown

College of Engineering

University of Oklahoma

Norman, OK

Abstract — An information theory project that features the

use of a small robot run on an ESP32 system. This robot uses

particle filters to localize itself on a small and simple map. By

locating itself on a map, the robot then would be able to path

plan from its starting location. By continuing to localize, a path

can be more accurately planned.

Keywords—Filtering, Particle Methods, Resampling, Particle

Filter

I. INTRODUCTION

A. Description of Problem

Robots are now used for many areas and applications. Many

areas where robots are used, path planning is required to

complete its task. However, path planning requires not only

that the robot knows where it is trying to get to, but also where

it is starting from. Robot localization can many various

sensors and data sources. Some of these are GPS, lidar, and

ultrasonic sensors. In addition, odometry data can also be used

to help localize a robot. When a robot is localized, it can then

continue on its path towards its goal.

B. Problem Solution

Particle filters are a type of Monte Carlo algorithm that can be

used for signal processing. By simulating particles and

sampling with these particles, an approximate solution can be

found to a complex model. By repeatedly resampling, a more

accurate representation of the system can be found. Over time,

this representation can converge to the robot’s location. With

the use of a simple known map and a robot platform, it was

possible to localize a robot.

C. Differences Between Orignal Plan and Implemented Plan

In the original project scope, the focus of robot localization was

to be applied to the IGVC competition for path planning. IGVC

is a robotics competition centered on navigating an autonomous

vehicle through a course marked with lanes. However, while

reviewing literature on filters over the semester, a smaller scope

was selected to ensure completion. By refocusing on a smaller

robot than the IGVC bot, the robot was localized on a smaller

scale and the lessons learned can be applied on similar projects

in the future.

II. ROBOT PLATFORM

A. Hardware

The robot used for testing and localization was constructed

with a small robot prototype chassis. This chassis held

batteries, motors, a motor controller, motor encoders, an

ultrasonic sensor, and an ESP32. The ESP32 used was the

ESP32-WROOM-32. This part was selected for its Wi-Fi

capabilities and its size to fit on the robot chassis. The

ultrasonic sensor is used to relay distance information to be

used for localization. In addition, the motor encoders are used

to control and measure how far the wheels have turned.

Figure 1. Small robot featuring an ESP32 to connect to computer running

Python code via Wi-Fi

B. Software

The software for the ESP32 board was created using the

Arduino IDE with the use of ESP32 and Wi-Fi libraries. The

ESP32 was configured as a Wi-Fi client that the computer

could then connect to. Once connected, it was possible to send

and receive data. This data included distance data from the

ultrasonic sensor and motor position data from the two motor

encoders. The motors were in turn controlled with PWM and

interrupts triggered by the motor encoders. This allowed for

controlled positioning of the motors instead of deadreckoning

by the amount of time the motors had been running. Once the

data was configured to be transferred, a filter could be

developed with Python and run on a system with more power.

III. PARTICLE FILTERS

A. Overview

A particle filter uses a known map or a system of known

probabilities to estimate the outcome of the system. In the case

of robot localization, a particle filter uses a known map and

the pose of the robot. The pose of the robot is the position (x

and y coordinates) and the orientation (reference angle theta)

of where it is pointing.

B. Process

For a particle filter to converge, the algorithm repeatedly

follows a series of steps. To begin with, an initial belief of the

system is created. The simplest initial belief of a system is for

uniform distribution across the known map. This is

represented by created a number of particles and uniformly

distributing them on the map. A higher number of particles

increases the accuracy of the representation of the model, but

it also increases computation complexity and time required.

Following the initial belief, additional measurements are made

using sensors and that information is used to adjust the weight

of the generated particles. In addition to updating the weights

of the various particles, the motion of the robot must also be

taken into account as it moves to collect more data. The use of

a motion model is used to change the positions of the particles

with a degree of error to represent error in the robot system.

New samples are then taken by using the newly weighted

particles as a distribution model and using a gaussian around

it. This process is then repeated and overtime the particles

converge if the necessary data is received properly.

IV. APPLICATION OF PARTICLE FILTER

A known map was created with the use of a wooden table and

wooden blocks to create a diving wall. Measurements were

then taken of this setup to complete the map.

Figure 2. The map setup with robot on the table.

Figure 3. A graphical representation of the known map

Using this setup, an initial uniform distribution of particles

was created with the robot represented as a point.

Figure 4. Initial uniform distribution of particles with 50 particles. Shows

position and angle that the robot was facing.

This setup was tested with a lower number of particles, but the

final number of particles was increased to 5000 particles.

Following a measurement from the ultrasonic sensor (a set

distance of 8cm was used for testing purposes before use of

the robot), the weights of each point were updated based on

how likely that point was based on the distance. This was done

with a series of trigonometry calculations and with the use of

the map as bounds. To localize the robot, additional data is

then required. To collect this data, the robot turns in place

towards the right. This allows more information to be

collected, but the position of the particles must also be

updated as the particle moves. As the robot is represented as a

point, only the theta value must be updated indicating which

direction the robot is pointing. Theta is updated based on how

far the motors are turned which corresponds to how far around

a circle the robot turned. Once the particles are updated, the

new weights are used to resample and obtain new particles.

This can be done as the new weights represent the distribution

in space of how likely the robot is to be at the location of any

of the particles. Resampling is with via weighted selection

with replacement. By placing a gaussian around each point,

new points can be selected and tuned using sigma values for x,

y and theta.

V. RESULTS

This particle filter was run on both test data with a constant

ultrasonic distance of 8 centimeters as well as on the

constructed robot field. The test data did not fully converge to

a point due to only one measurement used repeatedly.

However, it did allow points to be eliminated and a

distribution can be seen in the results showing the distance

away from the various walls in the map.

Figure 5. Screencap of result part way through a test run with ultrasonic

distance set to a constant 8 cm.

During the robot run on the constructed field, the points

converged reliably with only a few issues. Over a series of

measurements, the points converged to where the robot was

located on the map. However, in some instances, the robot

converged in spot that mirrored its actual location due to

similarities in the constructed course between the two sides.

Figure 6 &7. Screencaps of particles converging during a robot run.

VI. CONCLUSIONS

A. Challenges

There were several challenging aspects while tackling this

project. Once the project scope was revisited, this project

became much more manageable. However, there were still

issues while interfacing between the robot and the computer to

run the particle filter. In particular, there were connection

issues due to the ESP32 resetting due to sensitivity with

voltage dips caused by motor movement, the ultrasonic sensor

pinging, and Wi-Fi transmissions. This issue was solved by

adding capacitors to the voltage rails to limit voltage dips. In

addition, the graphics library that was used to display the

particles throughout the filtering process slowed down the

processing time vastly until adjustments were made. The robot

faced some issues correctly converging due to the near

symmetry of the map. While one side of the field was larger

than the other, this still posed issues as they were very similar.

This similarity sometimes resulted in the robot location

converging in the mirroring position on the table.

B. Further Work

This work can be further developed by using the known

robot position due to localization to path plan and navigate

around the table. In addition, the knowledge gained with

regards to filtering with this project can be applied to other

robotics projects. In specific, it will be applied to improve path

planning for an IGVC robot.

CODE

Code for this project can be viewed at:

https://github.com/SarahBrown/InfoTheory

REFERENCES

[1] “L9110 2-Channel Motor Driver - NCUT.” [Online]. Available:

http://me.web2.ncut.edu.tw/ezfiles/39/1039/img/617/L9110_2_CHANN
EL_MOTOR_DRIVER.pdf. [Accessed: 16-Dec-2021].

[2] Leimao, “Leimao/particle-filter: Robot localization in maze using
particle filter,” GitHub. [Online]. Available:
https://github.com/leimao/Particle-Filter. [Accessed: 16-Dec-2021].

[3] “Localize TurtleBot using Monte Carlo localization,” Localize
TurtleBot Using Monte Carlo Localization - MATLAB &

https://github.com/SarahBrown/InfoTheory

Simulink. [Online]. Available:
https://www.mathworks.com/help///nav/ug/localize-turtlebot-using-
monte-carlo-localization.html. [Accessed: 16-Dec-2021].

[4] “Numpy.random.normal,” numpy.random.normal - NumPy v1.21
Manual. [Online]. Available:
https://numpy.org/doc/stable//reference/random/generated/numpy.rando
m.normal.html. [Accessed: 16-Dec-2021].

[5] Rlabbe, “RLABBE Kalman-and-Bayesian-filters-in-python,” GitHub,
13-Oct-2020. [Online]. Available: https://github.com/rlabbe/Kalman-

and-Bayesian-Filters-in-Python/blob/master/12-Particle-Filters.ipynb.
[Accessed: 16-Dec-2021].

[6] “A tutorial on particle filtering and smoothing: Fifteen ...” [Online].
Available:
https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf
. [Accessed: 16-Dec-2021].

[7] “Understanding the particle filter.” [Online]. Available:
https://www.youtube.com/watch?v=NrzmH_yerBU. [Accessed: 16-Dec-
2021].

