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Abstract — An information theory project that features the 

use of a small robot run on an ESP32 system. This robot uses 

particle filters to localize itself on a small and simple map. By 

locating itself on a map, the robot then would be able to path 

plan from its starting location. By continuing to localize, a path 

can be more accurately planned. 
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I. INTRODUCTION  

A. Description of Problem 

Robots are now used for many areas and applications. Many 

areas where robots are used, path planning is required to 

complete its task. However, path planning requires not only 

that the robot knows where it is trying to get to, but also where 

it is starting from. Robot localization can many various 

sensors and data sources. Some of these are GPS, lidar, and 

ultrasonic sensors. In addition, odometry data can also be used 

to help localize a robot. When a robot is localized, it can then 

continue on its path towards its goal. 

B. Problem Solution 

Particle filters are a type of Monte Carlo algorithm that can be 

used for signal processing. By simulating particles and 

sampling with these particles, an approximate solution can be 

found to a complex model. By repeatedly resampling, a more 

accurate representation of the system can be found. Over time, 

this representation can converge to the robot’s location. With 

the use of a simple known map and a robot platform, it was 

possible to localize a robot. 

C. Differences Between Orignal Plan and Implemented Plan 

In the original project scope, the focus of robot localization was 

to be applied to the IGVC competition for path planning. IGVC 

is a robotics competition centered on navigating an autonomous 

vehicle through a course marked with lanes. However, while 

reviewing literature on filters over the semester, a smaller scope 

was selected to ensure completion. By refocusing on a smaller 

robot than the IGVC bot, the robot was localized on a smaller 

scale and the lessons learned can be applied on similar projects 

in the future. 

II. ROBOT PLATFORM 

A. Hardware 

The robot used for testing and localization was constructed 

with a small robot prototype chassis. This chassis held 

batteries, motors, a motor controller, motor encoders, an 

ultrasonic sensor, and an ESP32. The ESP32 used was the 

ESP32-WROOM-32. This part was selected for its Wi-Fi 

capabilities and its size to fit on the robot chassis. The 

ultrasonic sensor is used to relay distance information to be 

used for localization. In addition, the motor encoders are used 

to control and measure how far the wheels have turned. 

 

 
Figure 1. Small robot featuring an ESP32 to connect to computer running 

Python code via Wi-Fi 

B. Software 

The software for the ESP32 board was created using the 

Arduino IDE with the use of ESP32 and Wi-Fi libraries. The 

ESP32 was configured as a Wi-Fi client that the computer 

could then connect to. Once connected, it was possible to send 

and receive data. This data included distance data from the 

ultrasonic sensor and motor position data from the two motor 

encoders. The motors were in turn controlled with PWM and 

interrupts triggered by the motor encoders. This allowed for 

controlled positioning of the motors instead of deadreckoning 

by the amount of time the motors had been running. Once the 



data was configured to be transferred, a filter could be 

developed with Python and run on a system with more power. 

III. PARTICLE FILTERS 

A. Overview 

A particle filter uses a known map or a system of known 

probabilities to estimate the outcome of the system. In the case 

of robot localization, a particle filter uses a known map and 

the pose of the robot. The pose of the robot is the position (x 

and y coordinates) and the orientation (reference angle theta) 

of where it is pointing. 

B. Process 

For a particle filter to converge, the algorithm repeatedly 

follows a series of steps. To begin with, an initial belief of the 

system is created. The simplest initial belief of a system is for 

uniform distribution across the known map. This is 

represented by created a number of particles and uniformly 

distributing them on the map. A higher number of particles 

increases the accuracy of the representation of the model, but 

it also increases computation complexity and time required. 

Following the initial belief, additional measurements are made 

using sensors and that information is used to adjust the weight 

of the generated particles. In addition to updating the weights 

of the various particles, the motion of the robot must also be 

taken into account as it moves to collect more data. The use of 

a motion model is used to change the positions of the particles 

with a degree of error to represent error in the robot system. 

New samples are then taken by using the newly weighted 

particles as a distribution model and using a gaussian around 

it. This process is then repeated and overtime the particles 

converge if the necessary data is received properly. 

IV. APPLICATION OF PARTICLE FILTER 

A known map was created with the use of a wooden table and 

wooden blocks to create a diving wall. Measurements were 

then taken of this setup to complete the map.  

 

 
Figure 2. The map setup with robot on the table. 

 
Figure 3. A graphical representation of the known map 

 

Using this setup, an initial uniform distribution of particles 

was created with the robot represented as a point.  

 

 
Figure 4. Initial uniform distribution of particles with 50 particles. Shows 

position and angle that the robot was facing. 
 

This setup was tested with a lower number of particles, but the 

final number of particles was increased to 5000 particles. 

Following a measurement from the ultrasonic sensor (a set 

distance of 8cm was used for testing purposes before use of 

the robot), the weights of each point were updated based on 

how likely that point was based on the distance. This was done 

with a series of trigonometry calculations and with the use of 

the map as bounds. To localize the robot, additional data is 

then required. To collect this data, the robot turns in place 

towards the right. This allows more information to be 

collected, but the position of the particles must also be 

updated as the particle moves. As the robot is represented as a 

point, only the theta value must be updated indicating which 

direction the robot is pointing. Theta is updated based on how 

far the motors are turned which corresponds to how far around 

a circle the robot turned. Once the particles are updated, the 

new weights are used to resample and obtain new particles. 

This can be done as the new weights represent the distribution 

in space of how likely the robot is to be at the location of any 

of the particles. Resampling is with via weighted selection 

with replacement. By placing a gaussian around each point, 

new points can be selected and tuned using sigma values for x, 

y and theta. 

 



V. RESULTS 

This particle filter was run on both test data with a constant 

ultrasonic distance of 8 centimeters as well as on the 

constructed robot field. The test data did not fully converge to 

a point due to only one measurement used repeatedly. 

However, it did allow points to be eliminated and a 

distribution can be seen in the results showing the distance 

away from the various walls in the map. 

 

 
Figure 5. Screencap of result part way through a test run with ultrasonic 

distance set to a constant 8 cm. 

 

During the robot run on the constructed field, the points 

converged reliably with only a few issues. Over a series of 

measurements, the points converged to where the robot was 

located on the map. However, in some instances, the robot 

converged in spot that mirrored its actual location due to 

similarities in the constructed course between the two sides. 

 

 
Figure 6 &7. Screencaps of particles converging during a robot run. 

VI. CONCLUSIONS 

A. Challenges 

There were several challenging aspects while tackling this 

project. Once the project scope was revisited, this project 

became much more manageable. However, there were still 

issues while interfacing between the robot and the computer to 

run the particle filter. In particular, there were connection 

issues due to the ESP32 resetting due to sensitivity with 

voltage dips caused by motor movement, the ultrasonic sensor 

pinging, and Wi-Fi transmissions. This issue was solved by 

adding capacitors to the voltage rails to limit voltage dips. In 

addition, the graphics library that was used to display the 

particles throughout the filtering process slowed down the 

processing time vastly until adjustments were made. The robot 

faced some issues correctly converging due to the near 

symmetry of the map. While one side of the field was larger 

than the other, this still posed issues as they were very similar. 

This similarity sometimes resulted in the robot location 

converging in the mirroring position on the table. 

B. Further Work 

This work can be further developed by using the known 

robot position due to localization to path plan and navigate 

around the table. In addition, the knowledge gained with 

regards to filtering with this project can be applied to other 

robotics projects. In specific, it will be applied to improve path 

planning for an IGVC robot. 

CODE 

Code for this project can be viewed at: 

https://github.com/SarahBrown/InfoTheory  
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